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A computer code has been developed to simulate collisional effects
in plasmas for the regime where plasma instabilities are dominant but
are modified by weak collistons. The numerical method developed for
the code is composed of a Galerkin method embedded within a tocally
one-dimensional approach. This algarithm is used to solve, over the
(x, v) phase plane, a simplified Fokker-Planck equation with a one-
dimensional Fokker-Planck operator, including a velocity dependent
collision frequency. A stability analysis for the numerical scheme is
given. The effects of small angle collisions on the Landau damping of
plasma waves and the two-stream instability are examined. Results
confirm and extend earlier numerical observations.  © 1993 Academic
Psass, Inc.

1. INTRODUCTION

A more complele treatment of the physics of plasmas than
that possible with the Vlasov equation requires the solution
of the linearised Boltzmann equation with a Fokker-Planck
collision term [1] to allow for the electron-electron and
electron-ion encounters. The effect of these small angle
collisions is of great importance in the physics of fully
ionized plasma and should, if possible, be taken into
account when simulations of these plasmas are set up [ 1]
In the present work we have chosen to approximate this
requirement by using a simplified one-dimensional Fokker-
Planck model as suggested by Lenard and Bernstein [2]
and subscquently employed by various other authors
[3-11]. This one-dimensional coliision operator has the
form [10]
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v, allowing a dependence of the form fi ~ 1/v” corresponding
to Coulomb collisions, and P is a dilfusion coefficient. In (1)
the first term accounts for a velocity dependent friction force
due to collisions, which tends Lo siow the particles down and
so reduces the kinetic energy. The second term describes
the diffusion of particles in velocity space which leads to
an increase in kinetic energy. Conservation of energy is
obtained by choosing an appropriate form for D. The
velocity diffusion is important in the collisional damping of
plasma waves and the evolution of the distribution function
f of resonant electrons resulting from Landau damping of
plasma waves,

This model was used by Lenard and Bernstein {2] in an
analysis of collisional damping of plasma waves and by
Zakharov and Karpman (87 and also by Denavit, Doyle,
and Hirsch [5] in numerical and analytic studies of Landau
damping. A collision frequence independent of velocity was
used in all these studies. Rathmann and Denavit [10] and
Mehlhorn and Duderstadt [ 11] have used velocity depen-
dent collision frequencies in their studies of collisional effects
in plasmas. Numerical solutions of the three-dimensional
Fokker-Planck equation have been undertaken by Killeen
and Marx [9]. This allows more realistic representation of
collisions than is possible with the onc-dimensional model
al the cost of more complex calculations.

For the present work the collision frequency f in Eq. (1)
is taken to have the form [10]
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From energy conservation considerations it is found that
the diffusion coefficient D is now given by [10]
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Although this result was originally derived for a spatially
homogencous plasma {107, an analysis along similar lines
shows it to remain true for the present model. When the
collision frequency f does not depend upon velocity (4)
reduces to D = (v,

Published numerical solutions of the Fokker-Planck
equation are based mainly upon finite difference and trans-
form metheds [3-11] but two-dimensional finite elements
have been used for the Vlasov equation [12,13]. More
recently we have successfully applied a locally one-dimen-
sional method to the solution of the Viasov equation [14].
Here a Galerkin formulation incorporating a splitting
technique is used to set up a locally one-dimensional finite
element solution to the Fokker—Planck equation over the
two-dimensional (x, v) phase plane. This approach has been
adopted since to obtain accurate solutions to realistic
problems the conventional two-dimensional approach
makes very heavy demands upon computer storage and
CPU time.

2. THE GOVERNING DIFFERENTIAL EQUATIONS

A normalized version of the simplified Fokker—Planck
equation for a single species system in one dimension is
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where f(x, v, t) is the distribution function for electrons
moving with velocity v in the x direction. The vanables have
been normalized in the following way: x = x/1,. 1 > 1w,
v = 0/vy=0/(Apw,), E— Ef{dnngely), f— fl(ngedp); the
Debye length i, =./KT,/4nnye? and the plasma frequency

0, =\ /dnngetim,, where T, is the electron temperature and
My, Uy, M,, e are the electron number density, thermal

velocity, mass, and charge, respectively. The ions are
assumed to form a fixed neutralizing background. The term

of
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measures the effect of small angle collisions. The boundary
conditions which we have chosen to implement make f peri-
odic in the x direction and allow f — 0 as v becomes large.

The numerical solution method we will describe is based
upon the work of Peaceman and Rachford [15] and
Marchuk, D'Yakanov, and Yanenko [16] for finite dif-
ference methods and is related to the alternating-direction
implicit methods described by Hayes [ 17]. In this approach
a splitting technique, is applied to the two “space like”
dimensions x and v of Eqs. (1) and (6) so that the single
Fokker—Planck equation is replaced by a pair of coupled
one-dimensional equations
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When the numerical solution is set up Eq. (8) is taken as
valid over the first half of a time step and in it fis treated as
a function of x only, whereas in Eq. (9), valid over the
second half of a time step, f'is treated as a function of v only.

3. THE FINITE ELEMENT SOLUTION

The decoupled Fekker—Planck—Poisson system (8), (9),
and (7) will be solved over a rectangular region of the x — v
phase space bounded by the lines x=0, L and v = tv_,,.

Two orthogonal families of linear finite elements are set
up lying parallel to the coordinate axes and forming a net
over the region. Those lying parallel to the x-axis are called
the x-family and those parallet to the p-axis the v-family.
These elements have a mutual set of nodes sited at the
intersections of the families. There are N, nodes in the
x direction and N, nodes in the ¢ direction. The values
of the distribution function at the nodes are alternately
determined by solving either Eq. (8) along the x-family or
Eg. (9) along the v-family.

The finite element solution of Eq. (8) is constructed using
a space-time Galerkin formulation with weight function
N (x). For each element we obtain

0ol af . @
jo L N,(x) [a:“”a_ﬂ dx dt,

where the N {x) are the shape functions for the inter-
polation of the distribution function in space,

(10)
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We normalise time using f={41/2)7 and distance using
x=2dx &, where Ax, Ar are the linear dimensions of a
space-time finite element. Then (10} becomes

HN“[ e 2| e a

where ¢ = v 41/4x. Within each space-time finite element the
distribution function ¢ is interpolated by

(11)

fo=Y N(fi+14f)

=1

(12)

where f; is the nodal value for node x = x; at the beginning
of a time step and 4f; is the increment gained over that time
step. In the present work we will take the shape functions to
be piecewise linear functions of ¢ so that

=(1-¢ &) (13)
Using Eqgs. (12) and (13) in (11) leads to
2
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Assembling contributions Irom all elements along a typical
member of the x-family gives

[
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which is a set of simultanecus linear equations of tri-
diagonal form for updating the nodal values of f; over the
first half of a timestep. The assembied matrices 4, and B,
are the same for each member of the x-family. The variation
from member to member being provided only by the
parameter ¢ = v At/Ax.

A typical equation from (17) is

(1_3;) frrizy fn+1/2 (1+Z_C)f;:11/2
3¢ 3c
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j=1,., N (18)

where, for simplicity, all elements in the x-family are chosen
to have the same linear dimension Ax,

The finite element [13] solution of Eq. (9) is constructed
using a space-time Galerkin formulation with weight
function N,(v). We obtain
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For boundary conditions on f we assume that at
v=tuv,,, we have f=3af/ov=0. On integrating by parts
and using these boundary conditions we obtain

IF“ w[3Z-£Y)

— Pmax

[ﬁvf+D fﬁ):l dvdt=0. (19)
Using (4) for § gives
Zim=pLes?
af 3uf
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We apply the foregoing analysis and obtain the contri-
bution to (19) of a typical element, in terms of local
coordinates &, ¢, where r= (44/2)t and v = Ap(j + £), in the

R (f)[——cgﬂ
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107 3¢ }dé dr, (21)
where now c=FE At/dv for the typical element [jAduv,
(j+1Yde]and e=1—3D/(2{v?) +v?).

Now proceeding as before we obtain a second matrix
equation similar in form to Egq. (17) but relating the dis-
tribution function at time level n+ 1 to that at time level
n+ 1 Assembling contributions from all clements along a
typical member of the v-family leads to
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Strictly, this is a formal result as both b= 4t and e are
clement dependent.

The matrices 4, B;, P;, Q; are derived from the element
matrices {15) and {16), together with

Jé*Ndé

—1 =2
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and

Once more the variation in the matrix equation from mem-
ber to member of the v-family is provided by the parameter
¢ which depends only upon the electric field £ which is a
function only of x and so is constant along each member of
the v-family.

A typical member of Eq. (22) is
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with a similar result for e, ;. The subscript j denotes the
values at node v =yv;. All elements in the v direction have
the same constant linear dimension Av.

The original two-dimensional problem would lead to a
single matrix equation of size (¥,N,x N,N,) and band-
width (2N, +3). The locally one-dimensional approach
replaces this large system of equations by a series of N,
matrix equations of size (N, x N ) and N, matrix equations
of size (N, N,) all of tridiagonal form, or near tridiagonal
form, which are solvable directly by the Thomas algorithm
or a variant of it.

In setting up a numerical solution for Poisson’s equation
it is convenient to write Eq. (7) in the form

oF

™ (24)

=p, where pxl—j fdv.

Applying Galerkin’s method then leads to the system of
equations

Ax
—E, i+ E=5 (o1 ol (25)
where
Ny
pi=1 _Ef(xJ v
and (x;, v;) are the coordinates of the nodes. As boundary

conditions on the electrostatic field we take the average
value of the field to be zero. This leads to a recurrence
relationship for the nodal values of the field

Ax
E = 2
Ey=E(xy)= ZNXE:lP,(zJ 1 (26)
and
Ax
Ek—1=Ek“'—2'(Pk‘1+Pk),
where k=N, N-1, .,2 27)

The solution procedure we have adopted is as follows:

(2) Solve Eq. (18) separately along each line of nodes in
the x-family (v = v;) and so update the values of the distribu-
tion function to time level (# + 1); that is, determine /7 * /2.

{b) Use the recurrence relationship (27) to obtain the
nodal values of the electric field E, which is a function of x
only, for use in the next step.

{c) Solve Eq. (23) separately along each line of nodes in
the v family (x = x,, a constant, where E = E;) and so update
the values of the distribution function to time level n 41,
that is determine f7 * 1.
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Note that in solving (23) the redistribution of f takes
place only in the v direction and so it does not change
the values of p; (Eq. (26}); hence the solution of (27) is
unaffected and the electric field £ remains constant over the
second half of the timestep. There is thus no additional
approximation introduced in assuming E is constant when
using Eq. (23) to update values of /.

No bias has been observed when using this algorithm in
the simulations reported here. However, if bias is suspected
the updating can be alternated between the x and v
directions over two timesteps in the following way:

(a) spatial advance /" — f** '/ using (18),

(b} determine the electric field E from (27),

(c) velocity advance f"+'2 — f"+! using (23); E is
unaffected,

(d) velocity advance f"*'— f"+3* using (23); E is
unaffected,

(e) spatial advance f"*¥* — f"*? ysing {18).

Now repeat above stages (a)}-(e) throughout the simulation.

4. PROPERTIES OF THE NUMERICAL SCHEME

We now examine the properties of the numerical scheme
(18) and (23).

4.1, Numerical Stability

The stability analysis we set up is based on the Neumann
theory. We study the effects of the numerical scheme on a
Fourier mode of the distribution function

[y =Fre™,

where k is the mode number and 4 takes either the value 4x
or dv. The mode amplitude f at successive time levels is
related by the equation

f‘n+1,’2= gfn

where g is the growth factor.
For scheme (18} valid over the first half of a time step g
is given by

g=P—4
p+ig’

where p=2cos k4 + 4 and g = 3c sin k4. Thus |[g| =1 and
the scheme is unconditionally stable.
If we assume that all the b; and e; are locally constant with

values b and e, a similar analysis of Eq.(23) leads to a
growth factor

_2(1 + be + 3bd) cos kA + 4 + be — 6bd + in
8= 3(1 —be—3bd)cos kA + 4— be + 6bd—ia’

where o = (3¢ + 3bej) sin k4.

For =0 we find that the scheme is unconditionally
stable. When collisions occur, §#0, and we find the con-
dition for stability is Bbe(2—coskd)2coskd—1)+
48bd(1 —cos kAY2 +cos k4)=0. All the brackets are
greater than or equal to zero, except (2 cos k4 — 1) which is
negative when cos k4 lies in the range —1<coskd <3,
Thus term two is always positive, while term one becomes
negative when cos k4 < 1. When term two is small, through
cos k4 being near one, term one is positive, As cos k4
decreases down from one, term two increases in size,
whereas term one decreases, by the time cos k4 <0, and
term one becomes negative, term two is large enough (as
dfe > 1} to ensure that the whole expression remains
positive. The scheme is therefore unconditionally stable.

4.2. Conservation

The first, free streaming, part of the numerical scheme,
Eq. (18), conserves particle numbers and the moments of
the distribution function.

The second part, Eq.(23), also conserves particle
numbers. We now consider moments. Taking the first and
second moments of the distribution -function along a
v-family member produces

23 1 A Y ST o B At + At EY f1)
J i ¥
=22f;+1/20j_2f?+1/20jﬁdl
J J

—BUEY 1+,
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and, dropping second order terms,
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These equations are discrete analogues of

o) ek

T-I'(Uﬁ)— m (28)
13{e?) eE _
35 +7ﬂ—<v>—D<ﬁ>—<v2ﬁ>. (29)

Equations (28) and (29) are Eqs. (A8) and (A9} from
Appendix A of Ref. [10] for a spatially homogeneous one-
dimensional plasma. In (29) the left-hand members repre-
sent the rate of change of the sum of the one-dimensional
kinetic and potential energies and the diffusion coefficient D
is chosen to ensure that this sum is conserved. Summing
contributions of all v-family members generalises these
results to a spatially inhomogeneous one-dimensional
plasma.

In the simulations discussed in Section 5 the average
value of the self-consistent electric field E is zero and the
distribution function is an even function so that (¢>=10
and {vf> =0, It follows from Eq. (28) that the drift velocity
{v) remains zero and from Eq. (29) that {v?) is conserved.

5. THE SIMULATIONS

We examine the effect of collisions on the physics of one-
dimensional plasmas subject to self-consistent electric fields.
There are earlier computer simulations which include both
sell-consistent electric fields as well as collisional effects
[ 187, but that model was based on the Krook collision term
in which the distribution function relaxes to a Maxwellian
function at a rate which is independent of its gradient in
velocity space. The present collision operator includes
derivatives which take account of diffusion in velocity which
is important when studying the evolution of the distribution
function resulting from Landau damping of plasma waves.
Two classical problems, Landau damping and the two
stream instability, are considered in this study.

For the Viasov equation {§ = 0) the equilibrium distribu-
tion function is

folv) = (1/3/2 1) exp(—v*/2). (30)

Using this Maxwellian distribution function, with a velocity
dependent collision frequency (4), we find that {v*} and D
have the approximate values (v*>=15 and D=0.68.
When the collision frequency f is independent of velocity
D=<{v*)=1.

It has been shown [10] that for the simplified Fokker—
Planck equation discussed here the equilibrium distribution
function is given not by (30), but by

fg(””"°°)=( )(2 (v + 7))

1
?)
x exp( —0.88v%/{v?>). (31)
with an appropriate normalization. For this distribution
function we obtain the approximate values {v*}> = 1.004
and D=0.5692 leading to a=<{v’)/D=1.754, which
compares very well with the theoretical value of
a={v?>/D=176 [10]. For this case, since {(»’) is con-
stant, Rathmann and Denavit [10] find it convenient to
write the collision constant C = (3{v*>)*? v,, where v, may
be interpreted as the collision frequency of a particle at the
thermal velocity, With other distribution lunctions, for
example (33), these authors use a similar expression [10]
for C so that the collision frequency f is always of the form

(3¢wg2)* v

TR

(32)

where (v2) is the value at =0, and {v*) is the current
value; we shall follow the same practice,

Our first simulation will be of linear Landau damping
and we shall use as initial condition [7]

Solx, v, 0} = fo(v)(1 + 4 cos kx), (33)
where 4 is the amplitude of the initial sinusoidal pertur-
bation of wave number k& imposed upon the Maxwellian
distribution function fi(v), Eq. (30).

To place the present algorithm in the context of earlier
work we first examine a standard problem [7, 14] concern-
ing the relaxation of a small perturbation in the distribution
function for the collisionless case, vo=0. We use as initial
condition (33) and (30) with 4=0.05, £=0.5 so that the
plasma has length L = 12.56637 and we also take v_,, =6,
32 elements in x and 48 ¢lements in v so that 4o =0.25.
The behaviour of the amplitude of the first mode of the
electrostatic field is shown in Fig 1. It initially decays
with a damping rate y= —0.1537 and an oscillation
frequency w = 1.417 w, which compare well with values of
y=—0.1532 and w= 14159 w, obtained numerically by
Cheng and Knorr [7] and agree weil with y= —~0.1533 and
w= 14156 w, obtained from Landau’s dispersion rela-
tionship [197. An approximate recurrence of the initial state
occurs at about ¢ = 48(1/w,). This effect is well known [7],
having been observed in several independent simulations of
Landau damping, and has been shown to be due to the finite
velocity resolution of the methods. Theory predicts that the
recurrence occurs at time T, = 2x/(k 4v) = 48.85(1/w,) for
the present casc.

We have monitored the distribution function and its first
two moments throughout the run which lasts until a time
t=75(1/w,) and observe good conservation. We find that n
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amp = 0.05¢ , mex = 32

k= 0,500  nevx = 48
" dt = 0,125 , mode = 1
1o v, = 0000,

=
&

elecirostic  energy

a
-

s L L L
10 i 30 40 50 60 10
time {1/wp)

12434

12633 L

12632 |

12631

total energy

12.630

1269 H

12628 [

1 1 1 1 n 1
n 0 30 1] S0 1 70
time (1/wpl

FI1G. 1. Collisionless linear damping of a small perturbation. Upper
graph shows the variation in the amplitude of [E,|, k=05, 4 =005,
N,.=32, N,=48, L =12.56637, vy, =6.0, dt =0.125. Lower graph gives
variation in total energy.

(Eq. (3)) varies by less than 107%%, (v differs from zero
by less than 2 x 107, while {v?) varies by less than 0.08 %,
and in the period of linear damping 10 < 7 < 40 by less than
3 x 10~ *%. The conservation of energy is also good as can
be seen from the graph of the variation in the total energy
shown in Fig. 1. There is an initial transient up to 12.633
followed by oscillations of rapidly decreasing amplitude
until a constant value of 12.6292 is obtained at about
t=20{1/w,). Osciliations reappear in the energy at about
T, but rapidly die away. In all subsequent numericai
experiments the velocity step 4v is chosen small enough to
ensure that T, is longer than the run time so that no
recurrence effects occur within the simulation period.

This problem has also been solved using the alternate
algorithm given at the end of Section 3 and identical results
obtained.

To obtain linear damping conditions comparable with
those of other authors [5] we have chosen the parameters
in {33) to have the values 4 =0.05 and £ =0.3535. For this
choice the length of the plasma is L = 2x/k = 17.7743. There
are 32 elements in the x direction and 45 in the v direction,
Umax = 4.0. We have examined the effect of a velocity inde-
pendent collision frequency [207], for which f=v,, on the
time variation of the amplitude of the first electrostatic

0.5

L

FIG. 2. Linear
1= 80(1/e,); (

function at

Distribution

Landau damping.
) vo=0, (==} v, =0.2.

mode for collision parameters values of v, =0 and 0.005.
Previous investigators [5] determined the time variation of
the first mode of the number density. These two set of results
are comparable since on Fourier analysing Eq. (2) the
amplitude of the number density F,. and electric field E,
modes are related by E, =(l/rk) F,, where r is the mode
number. For the mode considered above E, = 3F, and the
behaviour of the number density mode, see Fig. 6 of
Ref. {57, is exactly mirrored in the electrostatic mode in the
present simulation. Initially, up to a time of about 30(1/w,)
both modes decay at nearly the expected linear damping
rate of y = —0.0343 [ 19]; thereafter, although the curve for
vo =0.005 still shows almost linear decay, the graph for
v =10.0 shows growth. For all values of v, the initial modal
amplitudes are F, =2x 1072 and E, =6 x 1072 At a later
time of about 60(l/wp) we find that for v,=0J0,
Fi=1x10"% and E,=3x10"7 while for v,=0.005,
Fi=14x10"%and E; =4 x 103 These values satisfy the
relationship discussed above. There is agreement between
our results and those of Denavit ef al. [5]; see their Fig. 6.
The Maxwellian distribution function remains smooth and
symmetric about v = 0. The graph of total energy shows this
to be conserved to better than 0.1 % in each simulation.
When a velocity dependent collision frequency of the form
(32) is used in a similar simulation the symmetric distribu-

1w

'L

04
— - o

=5
W e - ez

w s L L L I L s 2 ¢

] [ 20 30 (] S0 &0 kL] L1 L) 190
time

FIG. 3. Linear Landau damping. Electrostatic mode | E,|, k =0.3535,
A=005 N,=32, N,=45, L=177743, 1. =40, dr=0125 The
collision frequency v, has the values v, =0, 0.001, 0.005, 0.02, 0.05, 0.2.
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w? ~ N
N ~
~ b -
0L ‘\ N,
vy N \ -~

— = 0.0 * N
105 —— = 0.005 N N,

—-—-= 0402 . N

—— = 005

e AN N .
104 1 n 1 1 ' L PN L L L

0 10 20 30 40 50 60 " ) 90 100 " 120
time

FIG. 4. Non-linear Landau damping. Electrostatic mode |E, |, k =0.5,
A=05 N,=32, N,=128 L=125664, v, =50, and dr=0.125
Collision frequencies v, = 0.001, 0.005, 0.02, 0.05, 0.2,

tion function broadens and flattens as seen in [10]; see
Fig. 2. The amount of broadening varies with the size of the
collision frequency. In Fig. 3 the envelope of the amplitude
of the first mode of the electric field is shown. For the colli-
sionless model we observe an initial damping with rate
y= —00343 reaching a minimum at r=35(1/w,) after
which the mode amplitude shows oscillations. With the
rather small collision frequencies of v,=0.001 and 0.005
the mode is initially damped at rates y= —0.0382
and y=—0.0401 reaching minimum values at about
t = 35(1/w,) after which the mode grows at rates y = 0.0172
and y=0.0162 respectively. With larger collision frequen-
cies v, =0.02, 0.05, and 0.2 damping occurs throughout
the simulation. The mode is initially damped at rates
y=—00419, y= —0.0483, and y= —0.0883 which later
slacken off to y = —0.0269, y = —0.0334, and y= —0.0811,
respectively. In all the simulations the distribution function
remains smooth and symmetric and the total energy is
conserved to within 0.1 %.

\
\
04 Y 1 Ao I N L A

[ ) 3 L5 60 k] 90 105 120
time

FIG. 5. Non-linear Landau damping. Electrostatic mode | E,|, k =0.5,
A=05 N, =32, N,=128, L = 12.554, v, = 5.0, and dr = 0.125. Collision
frequencies v, =0.001, 0.005, 0.02, 0.05, 0.2.
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We also studied non-linear Landau damping using a
somewhat larger initial perturbation. In this case we use the
parameters A = 0.5 and £ =0.5, so that the plasma length is
I =12.5664. There are 32 clements in the x direction and
128 in the v direction, v,,,, = 7.0. A velocity dependent colli-
sion frequency (32) is used and v, is given the values 0.0,
0.001, 0.005, 0.02, 0.05, and 0.2. The collisionless results
agree well with those reported earlier [7] which had an
initial decay of y = —0.281 with a minimum reached at
t=15.3(1/ewp), followed by growth at 3 = 0.084 until about
t =40(1/wp). Graphs showing the variation in the envelop
of the first electrostatic mode for the simulations are given
in Fig. 4. For the smaller collision frequencies v, = 0.001 and
0.005 the curves show an initial decay at approximately
equal rates of y= —0.289, —0.291 with a minimum being
reached at about 7= 15{1/wp); a period of growth follows
with y =0.0813, 0.0796, respectively, up to a time of about
t=40(1/wp) and then there is slow amplitude oscillation.
With the larger frequencies of vo=0.02, 0.05, and 0.2 the
curves show an initial rapid decay at the rates y = —0.316,
y= —0332, and y= —0.353, respectively, up to a time
t=12, after which there is no growth but damping con-
tinues at the reduced rates of y= —0.157, y= —0.191, and
y=—0213.

For the second electrostatic mode similar observations
are made; see Fig. 5. With v4=0001 and 0.005 there is a
period of decay at rates y = —0.564, —0.566 with a mini-
mum being reached at about 7= 12(1/wp) followed by
growth at y =0.216, 0.209 with a maximum being reached at
about 1 =40(1/wp). Amplitude oscillations then occur with
some superimposed damping when v,=0.005. With the
larger collision frequencies there is again an initial period of
rapid decay at approximately the same rate of about
y=—0.761, followed by further decay at reduced rates.
Only when v, =0.02 is slight growth observed, sandwiched
between these periods of decay.
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FIG. 6. Non-linear Landau damping. Distribution functions at
1=120(1/w,) for v, =0, 0.001, 0.005, and 0.05.
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FIG. 7. Two stream instability. The effect of a non-zero collision
frequency v, on the amplitude envelope of {E |, k=05, 4=005, N, =32,
N,=128, L=125664, v, =50, and dr=0.125. Collision parameters
vo = 0.0002, 0.001, 0.002.

The third electrostatic mode follows a similar pattern.
With vy =0, 0.001, and 0.005 there is an initial period of
decay atratesy = — 1,031, — 1,042, —1.042 with a minimum
being reached at about r=12(1/wp) followed first by
growth and finally by amplitude oscillations with some
superimposed damping when v, =0.005. With the larger
collision frequencies there is again an initiai period of rapid
decay at approximately the same rate of y= —1.042,
followed by further decay at reduced rates. Only when
v, =0.02 is slight growth observed sandwiched between
these periods of decay.

A pronounced effect is observed on the distribution fune-
tion as shown in Fig. 6. In the collisioniess case, v, =0, it
remains Maxwellian but a wavy structure develops and
grows on the main body of the distribution function and
persists throughout the simulation [7, 8, 12]. For non-zero

a 0 2 n w5 §0 b 80 %0 100
tine
FIG. 8. Two stream instability. The effect of a non-zero collision
frequency v, on the amplitude envelope of |E, |, k=0.5, 4 =0.05, N, =32,
N, =128 L=125664, v_,,=50, and dr=0.125 Collision parameter
v = 0.0002, 0.001, 0.002

vo the wavy structure is smoothed out and for the larger
values of v, the distribution function broadens in a fashion
similar to that observed in simulations of collisional heating
of plasmas by ac and dc electric fields [ 10]. For the smaller
collision frequencies v, = 0.001 and 0.005 shoulders develop
on the distribution function.

When the Maxwellian distribution function (30) is
replaced by the equilibrium distribution function (31) we
find {v3»~ 1.006 and D~ 0.57. With 4 =0.05, k =0.3535,
and v, =0.001 the fundamental electrostatic mode initially
damps at a very low rate y = —0.0143 reaching a minimum
at r=35(1/wp), after which the amplitude shows slow
oscillations, while with 4 =0.5, k=0.5, and v, =0.005 the
same mode is initially damped with rate y = —0.258 reach-
ing a minimum at ¢ = 10{1/wp), after which the mode grows
at a rate y=0.063 attaining a maximum at = 40(1/wp).
The mode amplitude then oscillates while being slowly
damped. The distribution function remains unchanged in
shape and form throughout the entire simulation.

As a second example we study the symmetric “two stream
instability.” The initial fu(x, v, 0) is again given by (33)
while f,(v) takes the form

02 U2
Solv) =E exp (— 3)-

In this case the measured values of {»})> and D are
{r2>=3.0 and D=2.26. The “two stream instability” has
been widely studied, and to facilitate comparison with
earlier work {6, 7, 12, 21] we have chosen the parameter
values £ =0.5 and 4 =0.05, plasma length' L = 12.5664, and
32 x 128 finite elements are used. When velocity independent
collision frequencies with values vy=0, 0.001 are used, the
simulations produce results in complete agreement with
those reported earlier [6, 7].

(34)
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FIG. 9. Two stream instability. The cfiect of a non-zero collision
frequency v, on the amplitude envelope of |E.|, k=05, 4 =005, N, =132,
N, =128, L=125664, vy, =350, and dr=10.125. Collision parameters
vo = 0.0002, 0,601, 0.002,
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In Figs. 7-9 we present graphs showing how the envelope
of the amplitude of the first three harmonics of the electric
field are affected by velocity dependent collision frequencies
of form (32) taking v, = 0.0002, 0.001, and 0.002. The initial
transients are apparently little affected by collisions,
whereas the following stages show damping in amounts
dependent on the magnitude of vy. When vy = 0.0002 almost
no damping is observable in the graphs of the electric field
modes but the field energy curves do show some damping.
With vy =0.001 there is moderate damping of the electric
field mode amplitudes and of the field energy, which
becomes severe for v,=0.002. For collisionless cases
{7, 12, 21] it has been observed that the valley between the
two streams of electrons gradually fills in and that the dis-
tribution function develops some rather lumpy features.
Our results confirm the first observation also for non-zero
vy but we find, even with a very small non-zero collision fre-
quency, that the distribution function remains smooth and
symmetric and does not become lumpy. Rathmann and
Denavit [10] observe, for the two stream instability in a
spatially homogeneous plasma with no internal electric
field, that the two beams eventually relax into a single broad
beam. This tendency for the two beams to coalesce is also
found in the present simulations, as shown in Fig. 10. The
relaxation process is complete by r = 80(1/ew,,) for a collision
frequency of 0.005 while for smaller values such as
vo=10.0001 the beams are still distinct by the end of the run
at 1=200(1/w,).

The solution of Egs. (8) and (9) involve advection which
generally tends to generate spurious oscillations and
negative values of the distribution function near large
gradients. It is thought that the collision operator may well
help to alleviate this problem. To examine this idea a two
stream instability arising from two cold electron beams is
studied. The initial condition approximates

1
Jolv, 0) =i [6(x—125)+ d(x+ 1.25)].
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FIG. 10. Two stream instability. Distribution function compared at
times ¢ =0, 80{1/w,). Collision {requency vo =0.005.
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FIG. 11. Two stream instability: cold beams. Evolution of the
distribution function. Colhsion parameter v, = 0.002.

The actual distribution function comprises two trianguiar
areas each of height, 1/24v =064, based on two adjacent
finite elements; see Fig. 11. This configuration leads to very
steep gradients and poses a severe test for the algorithm.
Parameters include k=035, A=005 plasma length
L=125664, v,,, =50, and 32x 128 finite clements are
used.

For the collisionless case, vq = 0, the distribution function
fragments, spreads rapidly to the edges of the region, and
the simulation comes to a premature end at = 32.5(1/w,).
A small collision frequency, v,=0.0002, stabilises the
simulation to some extent so that it proceeds to completion
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FIG. 12. Two stream instability: cold beams. The evolution of the
amplitudes of modes 1 to 3 of the electrostatic energy. Plasma dimensions
L=125664, v, = 5.0, dr=0.125. Collision parameter v, = 0.002.
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at (=50(1/w,). Fragmentation has been halted but
spurious oscillations still develop and the function spreads
to the edges of the region. With a larger value, vy = 0.002, we
obtain the results given in Figs. 11 and 12. The amplitudes
of the electrostatic modes, Fig. 12, vary temporarily in a
way similar to those observed in collisionless simulations
with a Maxwellian f,(v); see Fig. 6 of Ref. [7]. Figure 1!
shows that the collision operator has influenced the dis-
tribution function, causing it to spread out uniformly, lead-
ing at t=50(1/w,) to a doubly humped distribution very
similar in form to that found with a Maxwellian initiat con-
dition; cf. Fig. 8 of Ref. [7]. The larger collision frequency
has suppressed the development of spurious oscillations on
the distribution function arising from the rather extreme
initial conditions. These oscillations can also be controlled
by increasing the number of finite elements in the regions
where large gradients are observed.

6. DISCUSSION

Here we have developed a splitting technique within a
locally one-dimensional finite element method to solve the
Fokker-Planck equation for an electron plasma with a
homogeneous background plasma of ions. A one-dimen-
sional collision operator of the type suggested by Lenard
and Bernstein [2] in which the collision frequency may be
a function of velocity, allowing Coulomb collisions to be
modelled, has been incorporated into the computer code,
The algorithm is unconditionally stable, conserves particle
numbers, and an appropriate form for the diffusion coef-
ficient ensures that it is energy conserving. This scheme
has been used to simulate linear and non-linear Landau
damping of plasma waves and the symmetric two stream
instability. We have demonstrated that the method
reproduces in detail the physics of the phenomena
investigated, producing results ‘confirming and extending
earlier numerical observations.

In the simulations reported here the energy conservation
for ail simulations was better than 0,1%. An operation
count for the one-dimensional algorithm shows it to require
approximately (34N, N,) x/= and (52N, N,) +/— per
timestep, where N,, N, are large. This count is similar to
that for Rathman and Denavit’s particle code based algo-
rithm [10], which also requires a count proportional to

N, N, and which is much less than needed by the two-
dimensional algorithm [12].

The advantages of the present locally one-dimensional
scheme in the solution of the simplified Fokker—Planck
equation lie in its simplicity and efficiency. 1t can be
extended to more complicated problems in higher dimen-
sions of space or velocity and to more general boundary
conditions. Using this approach, two- or three-dimensional
simulations with the simplified Fokker—Planck equation are
feasible by reduction of the original problem to a series of
one-dimensional problems.
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